Work 5 of 6 problems.
Each problem is worth 20 points.
Use one side of the paper only and hand your work in order.
Do not interpret a problem in such a way that it becomes trivial.

- (1) Let $\{a_n\}_{n=1}^{\infty} \subset (0,\infty)$ and c > 0 be given. Suppose that $\lim_{n\to\infty} a_n = 0$ and $\sum_{n=1}^{\infty} a_n$ diverges. Prove that there exists a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty} a_{n_k} = c$.
- (2) Let $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \subset \mathbb{R}$ be bounded sequences, and define the sets

 $A := \{a_n : n = 1, 2, ...\}, \quad B := \{b_n : n = 1, 2, ...\}, \text{ and } C := \{a_n + b_n : n = 1, 2, ...\}.$

- Prove or provide a counterexample each of the following statements.
- (a) If $a \in \mathbb{R}$ is a limit point for A and $b \in \mathbb{R}$ is a limit point for B, then a + b is a limit point for C. (Here limit point means accumulation or cluster point.)
- (b) If $c \in \overline{C}$, then there exists $a \in \overline{A}$ and $b \in \overline{B}$ such that a + b = c.
- (c) If $a_n \ge 0$ for all n = 1, 2, ..., then $\limsup_{n \to \infty} (a_n^2) = (\limsup_{n \to \infty} a_n)^2$.
- (3) Let (X, ρ) be a metric space and define $\sigma : X \times X \to [0, \infty)$ by

$$\sigma(x,y) := \min\{1,\rho(x,y)\}.$$

- (a) Prove that σ is a metric on X.
- (b) Prove that (X, ρ) is complete if and only if (X, σ) is complete.
- (4) With a < b, let C([a, b]) denote the family of all \mathbb{R} -valued functions that are continuous on the interval [a, b].
 - (a) Let $M < \infty$ and $\mathcal{F} \subseteq \mathcal{C}([a, b])$ be given. Assume that each $f \in \mathcal{F}$ is differentiable on (a, b) and satisfies $|f(a)| \leq M$ and $|f'(x)| \leq M$ for all $x \in (a, b)$. Prove that \mathcal{F} is equicontinuous on [a, b].
 - (b) Let a uniformly bounded sequence of functions $\{g_n\}_{n=1}^{\infty} \subset \mathcal{C}([0,1])$ be given. For each $n = 1, 2, \ldots$, define $f_n : [0,1] \to \mathbb{R}$ by

$$f_n(x) := \begin{cases} 0, & x = 0\\ \frac{1}{x} \int_0^x sg_n(s) ds, & 0 < x \le 1. \end{cases}$$

Prove that there exists a subsequence of $\{f_n\}_{n=1}^{\infty}$ that converges uniformly on [0, 1] to some $f \in \mathcal{C}([0, 1])$.

- (5) (a) Let $a, b \in \mathbb{R}$, with a < b, be given, and suppose that $f : (a, b) \to \mathbb{R}$ is differentiable on (a, b) and that $\lim_{x\to c} f'(x)$ both exists and is finite, for all $c \in (a, b)$. Prove that f is continuously differentiable on (a, b).
 - (b) Produce a function $f: (-1, 1) \to \mathbb{R}$ that is everywhere differentiable and such that f' is discontinuous at some $c \in (-1, 1)$. Justify your claim.
- (6) The parts of this problem are not connected.
 - (a) Let $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ and a strictly increasing sequence $\{x_n\}_{n=1}^{\infty} \subset (0,1)$ be given. Assume that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, and define $\alpha : [0,1] \to \mathbb{R}$ by

$$\alpha(x) := \begin{cases} a_n, & x = x_n, \\ 0, & \text{otherwise} \end{cases}$$

Prove or disprove: α has bounded variation on [0, 1].

(b) Suppose that $f : [0,1] \to \mathbb{R}$ is Riemann-Stieltjes integrable with respect to a nondecreasing function $\beta : [0,1] \to [0,\infty)$. Prove that f is Riemann-Stieltjes integrable with respect to the function β^2 .