- Work 5 of 6 problems. - Each problem is worth 20 points. - Use one side of the paper only and hand your work in order.
- Do not interpret a problem in such a way that it becomes trivial.
(1) Let $\left\{a_{n}\right\}_{n=1}^{\infty} \subset(0, \infty)$ and $c>0$ be given. Suppose that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\sum_{n=1}^{\infty} a_{n}$ diverges. Prove that there exists a subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty} a_{n_{k}}=c$.
(2) Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ be bounded sequences, and define the sets

$$
A:=\left\{a_{n}: n=1,2, \ldots\right\}, \quad B:=\left\{b_{n}: n=1,2, \ldots\right\}, \quad \text { and } \quad C:=\left\{a_{n}+b_{n}: n=1,2, \ldots\right\} .
$$

Prove or provide a counterexample each of the following statements.
(a) If $a \in \mathbb{R}$ is a limit point for A and $b \in \mathbb{R}$ is a limit point for B, then $a+b$ is a limit point for C. (Here limit point means accumulation or cluster point.)
(b) If $c \in \bar{C}$, then there exists $a \in \bar{A}$ and $b \in \bar{B}$ such that $a+b=c$.
(c) If $a_{n} \geq 0$ for all $n=1,2, \ldots$, then $\lim \sup _{n \rightarrow \infty}\left(a_{n}^{2}\right)=\left(\limsup _{n \rightarrow \infty} a_{n}\right)^{2}$.
(3) Let (X, ρ) be a metric space and define $\sigma: X \times X \rightarrow[0, \infty)$ by

$$
\sigma(x, y):=\min \{1, \rho(x, y)\}
$$

(a) Prove that σ is a metric on X.
(b) Prove that (X, ρ) is complete if and only if (X, σ) is complete.
(4) With $a<b$, let $\mathcal{C}([a, b])$ denote the family of all \mathbb{R}-valued functions that are continuous on the interval $[a, b]$.
(a) Let $M<\infty$ and $\mathcal{F} \subseteq \mathcal{C}([a, b])$ be given. Assume that each $f \in \mathcal{F}$ is differentiable on (a, b) and satisfies $|f(a)| \leq M$ and $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(a, b)$. Prove that \mathcal{F} is equicontinuous on $[a, b]$.
(b) Let a uniformly bounded sequence of functions $\left\{g_{n}\right\}_{n=1}^{\infty} \subset \mathcal{C}([0,1])$ be given. For each $n=1,2, \ldots$, define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{n}(x):= \begin{cases}0, & x=0 \\ \frac{1}{x} \int_{0}^{x} s g_{n}(s) \mathrm{d} s, & 0<x \leq 1\end{cases}
$$

Prove that there exists a subsequence of $\left\{f_{n}\right\}_{n=1}^{\infty}$ that converges uniformly on $[0,1]$ to some $f \in \mathcal{C}([0,1])$.
(5) (a) Let $a, b \in \mathbb{R}$, with $a<b$, be given, and suppose that $f:(a, b) \rightarrow \mathbb{R}$ is differentiable on (a, b) and that $\lim _{x \rightarrow c} f^{\prime}(x)$ both exists and is finite, for all $c \in(a, b)$. Prove that f is continuously differentiable on (a, b).
(b) Produce a function $f:(-1,1) \rightarrow \mathbb{R}$ that is everywhere differentiable and such that f^{\prime} is discontinuous at some $c \in(-1,1)$. Justify your claim.
(6) The parts of this problem are not connected.
(a) Let $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ and a strictly increasing sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset(0,1)$ be given. Assume that $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, and define $\alpha:[0,1] \rightarrow \mathbb{R}$ by

$$
\alpha(x):= \begin{cases}a_{n}, & x=x_{n} \\ 0, & \text { otherwise }\end{cases}
$$

Prove or disprove: α has bounded variation on $[0,1]$.
(b) Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is Riemann-Stieltjes integrable with respect to a nondecreasing function $\beta:[0,1] \rightarrow[0, \infty)$. Prove that f is Riemann-Stieltjes integrable with respect to the function β^{2}.

